Search results for "KAON DECAYS"

showing 10 items of 19 documents

Measurement of the radiative K-e3 branching ratio

2005

We present a measurement of the relative branching ratio of the decay KL -> pi e nu gamma (Ke3gamma) with respect to KL-> pi e nu (gamma) (Ke3+Ke3gamma) decay. The result is based on observation of 19 000 Ke3gamma and 5.6 x 10^6 Ke3 decays. The value of the branching ratio is Br(Ke3gamma, Egamma^*>30 MeV,theta(e,gamma)^*>20^o)/Br(Ke3)= (0.964+-0.008+0.011-0.009)%. This result agrees with theoretical predictions but is at variance with a recently published result.

Nuclear and High Energy PhysicsChiral perturbation theoryPhotonHadronFOS: Physical scienceskaon decay; NEUTRAL KAON; branching ratio7. Clean energy01 natural sciencesNEUTRAL KAONHigh Energy Physics - ExperimentNuclear physicsmesoni KHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesRadiative transfer[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]radiative kaon decays010306 general physicsmesoni K; decadimenti radiativiPhysics010308 nuclear & particles physicsBranching fractionK13 DECAYSBremsstrahlungkaon decayAmplitudedecadimenti radiativibranching ratioAtomic physicsParticle Physics - Experiment
researchProduct

Searches for lepton number violation and resonances in K± → πμμ decays

2017

The NA48/2 experiment at CERN collected a large sample of charged kaon decays to final states with multiple charged particles in 2003–2004. A new upper limit on the rate of the lepton number violating decay K±→π∓μ±μ± is reported: B(K±→π∓μ±μ±)<8.6×10−11 at 90% CL. Searches for two-body resonances X in K±→πμμ decays (such as heavy neutral leptons N4 and inflatons χ ) are also presented. In the absence of signals, upper limits are set on the products of branching fractions B(K±→μ±N4)B(N4→πμ) and B(K±→π±X)B(X→μ+μ−) for ranges of assumed resonance masses and lifetimes. The limits are in the (10−11,10−9) range for resonance lifetimes below 100 ps.

leptonBEAM01 natural sciences7. Clean energyPhysics Particles & FieldsHigh Energy Physics - ExperimentLIMITSkaon physicsCERNIntermediate statelepton number violation neutrinos dark matter kaon physicsPhysicsVMSMLarge Hadron ColliderPhysicsCharge KaonsneutrinosNuclear and High Energy Physics; CERN; leptonsHigh Energy Physics - Experiment; Charge Kaons; Lepton number violationNuclear & Particles PhysicsCharged particlelcsh:QC1-999NEUTRAL HEAVY-LEPTONSPhysics Nuclearlepton number violationPhysical SciencesParticle physicsNuclear and High Energy Physicsleptonskaon decays lepton number violationNuclear and High Energy Physics lepton kaon meson lepton number violation NA48Socio-culturaleAstronomy & AstrophysicsUPPER-BOUNDSdark matterNuclear physics0202 Atomic Molecular Nuclear Particle And Plasma Physics0103 physical sciencesDARK-MATTERPARTICLES010306 general physicsScience & Technologykaon decays010308 nuclear & particles physicsBranching fractionResonanceInflatonLepton numberkaon mesonNA48High Energy Physics::Experimentlcsh:PhysicsLepton
researchProduct

Search for heavy neutrinos at the NA48/2 and NA62 experiments at CERN

2018

© The Authors, published by EDP Sciences. The NA48/2 experiment at CERN has collected large samples of charged kaons decaying into a pion and two muons for the search of heavy nuetrinos. In addition, its successor NA62 has set new limits on the rate of charged kaon decay into a heavy neutral lepton (HNL) and a lepton, with = e, µ, using the data collected in 2007 and 2015. New limits on heavy neutrinos from kaon decays into pions, muons and positrons are presented in this report.

PhysicsParticle physicsLarge Hadron ColliderMuonPhysics::Instrumentation and Detectors010308 nuclear & particles physicsPhysicsQC1-999Nuclear TheoryHigh Energy Physics::PhenomenologyHeavy neutrino01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnuclearePhysics and Astronomy (all)Pion0103 physical sciencesHigh Energy Physics::ExperimentKaon decaysNeutrinoHeavy neutrinoNuclear Experiment010306 general physicsKaon decays Heavy neutrinoParticle Physics - ExperimentLepton
researchProduct

Observation of the rare decay K-S -> pi(0)e(+)e(-)

2003

A search for the decay Ks->pi0e+e- has been made by the NA48/1 experiment at the CERN SPS accelerator. Using data collected during 89 days in 2002 with a high-intensity Ks beam, 7 events were found with a background of 0.15 events. The branching fraction BR(Ks->pi0e+e-, m(ee) > 0.165 GeV/c^2) = (3.0^{+1.5}_{-1.2}(stat) +/-0.2 (syst)) x 10^{-9} has been measured. Using a vector matrix element and a form factor equal to one, the measurement gives BR(Ks->pi0e+e-) = (5.8^{+2.9}_{-2.4}) x 10^{-9}.

mesoni K; decadimenti rariPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsBranching fractionK-LForm factor (quantum field theory)Analytical chemistryKAON DECAYS01 natural sciences3. Good healthHigh Energy Physics - Experimentmesoni Kdecadimenti rariCP VIOLATION; KAON DECAYS; K-L; SEARCHSEARCH0103 physical sciencesMatrix elementCP VIOLATIONAtomic physics010306 general physics
researchProduct

Flavor physics in the quark sector

2010

218 páginas, 106 figuras, 89 tablas.-- arXiv:0907.5386v2.-- Report of the CKM workshop, Rome 9-13th Sep. 2008.-- et al.

QuarkParticle physicsKobayashi-Maskawa MatrixMesonField (physics)Rare Kaon DecaysHigh Energy Physics::LatticeFlavourGeneral Physics and AstronomyFOS: Physical sciencesPhysics and Astronomy(all)Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix element01 natural sciencesDirect Cp-ViolationStandard ModelTo-Leading OrderHigh Energy Physics - Phenomenology (hep-ph)Chiral Perturbation-Theory/dk/atira/pure/subjectarea/asjc/31000103 physical sciences010306 general physicsFlavorParticle Physics - PhenomenologyPhysics010308 nuclear & particles physics12.15.Hh Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementsHigh Energy Physics::PhenomenologyELEMENTARY PARTICLE PHYSICSFísicahep-ph13.20.Eb Decays of K mesonsQuantum numberLarge Tan-BetaSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Phenomenology13.20.He Decays of bottom mesonsB MESON[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Effective-Field-TheoryCP violationB-Meson DecaysUniversal Extra DimensionsHigh Energy Physics::ExperimentCP VIOLATIONRooted Staggered FermionsCharmed mesons (|C|>0 B=0)
researchProduct

Searches for lepton number violating $K^+$ decays

2019

The NA62 experiment at CERN reports a search for the lepton number violating decays K+ -> pi(-)e(+)e(+) and K+ -> pi(-)mu(+)mu(+) using a data sample collected in 2017. No signals are observed, and upper limits on the branching fractions of these decays of 2.2 x 10(-10) and 4.2 x 10(-11) are obtained, respectively, at 90% confidence level. These upper limits improve on previously reported measurements by factors of 3 and 2, respectively.

branching ratio: upper limitK+: rare decayNA62 experiment01 natural sciencesNA62Settore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - Experimentelectron: pair productionHigh Energy Physics - Experiment (hep-ex)EconomicaK+: branching ratio[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]K meson decayPhysicsLarge Hadron ColliderElectroweak interactionlcsh:QC1-999muon: pair productionlepton number violationK+: semileptonic decayK+: secondary beamParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsCERN LabS010.46FOS: Physical scienceskaonsS010:Desig=46K+ --> pi- 2muon+Partícules (Física nuclear)PE2_2Violació CP (Física nuclear)0103 physical sciencesKaon decayslepton number violation K meson K meson decay010306 general physicslepton number: violationKaon decays Lepton Number Violationhep-ex010308 nuclear & particles physicsS010:Desig=19CERN SPSK mesonLepton numberK+ --> pi- electron positronKaon Physics; Lepton Flavour Violation; NA62S010.19lcsh:Physicsexperimental results
researchProduct

Search for K+ decays to a muon and invisible particles

2021

The NA62 experiment at CERN reports searches for $K^+\to\mu^+N$ and $K^+\to\mu^+\nu X$ decays, where $N$ and $X$ are massive invisible particles, using the 2016-2018 data set. The $N$ particle is assumed to be a heavy neutral lepton, and the results are expressed as upper limits of ${\cal O}(10^{-8})$ of the neutrino mixing parameter $|U_{\mu4}|^2$ for $N$ masses in the range 200-384 MeV/$c^2$ and lifetime exceeding 50 ns. The $X$ particle is considered a scalar or vector hidden sector mediator decaying to an invisible final state, and upper limits of the decay branching fraction for $X$ masses in the range 10-370 MeV/$c^2$ are reported for the first time, ranging from ${\cal O}(10^{-5})$ t…

Nuclear and High Energy PhysicsScalar (mathematics)FOS: Physical sciences01 natural sciences7. Clean energyNA62High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesheavy neutral leptonsDark sector NA62physics beyond Standard Model010306 general physicsPhysicsRange (particle radiation)Muonkaon decays010308 nuclear & particles physicsBranching fractionDark sectorSettore FIS/04Kaonslcsh:QC1-999Hidden sectorParticleHigh Energy Physics::ExperimentNeutrinoParticle Physics - Experimentlcsh:PhysicsLepton
researchProduct

Search for heavy neutrinos in K + → μ + ν μ decays

2017

The NA62 experiment recorded a large sample of K+→μ+νμ decays in 2007. A peak search has been performed in the reconstructed missing mass spectrum. In the absence of a signal, limits in the range 2×10−6 to 10−5 have been set on the squared mixing matrix element |Uμ4|2 between muon and heavy neutrino states, for heavy neutrino masses in the range 300–375 MeV/ c2 . The result extends the range of masses for which upper limits have been set on the value of |Uμ4|2 in previous production search experiments.

PhysicsNuclear and High Energy PhysicsRange (particle radiation)Particle physicsMuon010308 nuclear & particles physicsPhysics beyond the Standard ModelHeavy neutrinoNA62 experiment01 natural scienceslcsh:QC1-999Heavy neutrinos; Kaon decays; Nuclear and High Energy PhysicsNuclear physicsKaon decayHeavy neutrinos0103 physical sciencesMass spectrumKaon decaysNeutrinoHeavy neutrino010306 general physicslcsh:PhysicsMixing (physics)
researchProduct

Search for heavy neutral lepton production in K+ decays to positrons

2020

A search for heavy neutral lepton ($N$) production in $K^+\to e^+N$ decays using the data sample collected by the NA62 experiment at CERN in 2017--2018 is reported. Upper limits of the extended neutrino mixing matrix element $|U_{e4}|^2$ are established at the level of $10^{-9}$ over most of the accessible heavy neutral lepton mass range 144--462 MeV/$c^2$, with the assumption that the lifetime exceeds 50 ns. These limits improve significantly upon those of previous production and decay searches. The $|U_{e4}|^2$ range favoured by Big Bang Nucleosynthesis is excluded up to a mass of about 340 MeV/$c^2$.

AstrofísicaNuclear and High Energy PhysicsHeavy neutral lepton kaon meson kaon decay positronPontecorvo–Maki–Nakagawa–Sakata matrixSocio-culturaleFOS: Physical sciencesNA62 experiment7. Clean energy01 natural sciencesNA62High Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Positronkaon decays heavy neutral lepton SM extensionsPE2_2Big Bang nucleosynthesisSM extensionskaon physics0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsComputingMilieux_MISCELLANEOUSPhysicsRange (particle radiation)Large Hadron Colliderkaon decays010308 nuclear & particles physicshep-exSettore FIS/04Heavy neutral leptonlepton flavour violationFísicalcsh:QC1-999kaon mesonkaon decaykaon physics; lepton flavour violation; NA62positronProduction (computer science)High Energy Physics::Experimentkaonlcsh:PhysicsParticle Physics - ExperimentLepton
researchProduct

A strategy to study the role of the charm quark in explaining the Delta{I}=1/2 rule

2004

We present a strategy designed to separate several possible origins of the well-known enhancement of the Delta{I}=1/2 amplitude in non-leptonic kaon decays. In particular, we seek to disentangle the contribution of physics at the typical QCD scale (soft-gluon exchange) from the effects at the scale of the charm quark mass. This is achieved by considering QCD with an unphysically light charm quark, so that the theory possesses an approximate SU(4)_L x SU(4)_R chiral symmetry. By computing the relevant operator matrix elements and monitoring their values as the charm quark mass departs from the SU(4)-symmetric situation, the role of the charm quark can be assessed. We study the influence of t…

Nuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeLattice (group)FOS: Physical sciencesScale (descriptive set theory)weak decaysCharm quarkHigh Energy Physics - Phenomenology (hep-ph)lattice QCDHigh Energy Physics - Latticefield theory gauge theory lattice kaon decayskaon physicschiral lagrangiansLimit (mathematics)Quantum chromodynamicsPhysicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyFísicaFIS/02 - FISICA TEORICA MODELLI E METODI MATEMATICIHigh Energy Physics - PhenomenologyAmplitudeOperator matrixHigh Energy Physics::Experiment
researchProduct